1,122 research outputs found

    A Vacuum Accumulation Solution to the Strong CP Problem

    Full text link
    We suggest a solution to the strong CP problem in which there are no axions involved. The superselection rule of the \theta-vacua is dynamically lifted in such a way that an infinite number of vacua are accumulated within the phenomenologically acceptable range of \theta < 10^{-9}, whereas only a measure-zero set of vacua remains outside of this interval. The general prediction is the existence of membranes to which the standard model gauge fields are coupled. These branes may be light enough for being produced at the particle accelerators in form of the resonances with a characteristic membrane spectrum.Comment: 17 page

    Large Hierarchies from Attractor Vacua

    Full text link
    We discuss a mechanism through which the multi-vacua theories, such as String Theory, could solve the Hierarchy Problem, without any UV-regulating physics at low energies. Because of symmetry the number density of vacua with a certain hierarchically-small Higgs mass diverges, and is an attractor on the vacuum landscape.The hierarchy problem is solved in two steps. It is first promoted into a problem of the super-selection rule among the infinite number of vacua (analogous to theta-vacua in QCD), that are finely scanned by the Higgs mass. This rule is lifted by heavy branes, which effectively convert the Higgs mass into a dynamical variable. The key point is that a discrete "brane-charge-conjugation" symmetry guarantees that the fineness of the vacuum-scanning is set by the Higgs mass itself. On a resulting landscape in all, but a measure-zero set of vacua the Higgs mass has a common hierarchically-small value. In minimal models this value is controlled by the QCD scale and is of the right magnitude. Although in each particular vacuum there is no visible UV-regulating low energy physics, the realistic models are predictive. For example, we show that in the minimal case the "charge conjugation" symmetry is automatically a family symmetry, and imposes severe restrictions on quark Yukawa matrices.Comment: 33 pages, Late

    Ultra-High Energy Probes of Classicalization

    Full text link
    Classicalizing theories are characterized by a rapid growth of the scattering cross section. This growth converts these sort of theories in interesting probes for ultra-high energy experiments even at relatively low luminosity, such as cosmic rays or Plasma Wakefield accelerators. The microscopic reason behind this growth is the production of N-particle states, classicalons, that represent self-sustained lumps of soft Bosons. For spin-2 theories this is the quantum portrait of what in the classical limit are known as black holes. We emphasize the importance of this quantum picture which liberates us from the artifacts of the classical geometric limit and allows to scan a much wider landscape of experimentally-interesting quantum theories. We identify a phenomenologically-viable class of spin-2 theories for which the growth of classicalon production cross section can be as efficient as to compete with QCD cross section already at 100 TeV energy, signaling production of quantum black holes with graviton occupation number of order 10^4.Comment: 23 pages, late

    A bound on the effective gravitational coupling from semiclassical black holes

    Get PDF
    We show that the existence of semiclassical black holes of size as small as a minimal length scale lUVl_{UV} implies a bound on a gravitational analogue of 't-Hooft's coupling λG(l)≡N(l)GN/l2\lambda_G(l)\equiv N(l) G_N/l^2 at all scales l≄lUVl \ge l_{UV}. The proof is valid for any metric theory of gravity that consistently extends Einstein's gravity and is based on two assumptions about semiclassical black holes: i) that they emit as black bodies, and ii) that they are perfect quantum emitters. The examples of higher dimensional gravity and of weakly coupled string theory are used to explicitly check our assumptions and to verify that the proposed bound holds. Finally, we discuss some consequences of the bound for theories of quantum gravity in general and for string theory in particular.Comment: 16 page

    A Novel Approach to the Cosmological Constant Problem

    Full text link
    We propose a novel infinite-volume brane world scenario where we live on a non-inflating spherical 3-brane, whose radius is somewhat larger than the present Hubble size, embedded in higher dimensional bulk. Once we include higher curvature terms in the bulk, we find completely smooth solutions with the property that the 3-brane world-volume is non-inflating for a continuous range of positive values of the brane tension, that is, without fine-tuning. In particular, our solution, which is a near-BPS background with supersymmetry broken on the brane around TeV, is controlled by a single integration constant.Comment: 20 pages, revte

    Blown-up p-Branes and the Cosmological Constant

    Full text link
    We consider a blown-up 3-brane, with the resulting geometry R^(3,1) \times S^(N-1), in an infinite-volume bulk with N > 2 extra dimensions. The action on the brane includes both an Einstein term and a cosmological constant. Similar setups have been proposed both to reproduce 4-d gravity on the brane, and to solve the cosmological constant problem. Here we obtain a singularity-free solution to Einstein's equations everywhere in the bulk and on the brane, which allows us to address these question explicitely. One finds, however, that the proper volume of S^(N-1) and the cosmological constant on the brane have to be fine-tuned relatively to each other, thus the cosmological constant problem is not solved. Moreover the scalar propagator on the brane behaves 4-dimensionally over a phenomenologically acceptable range only if the warp factor on the brane is huge, which aggravates the Weak Scale - Planck Scale hierarchy problem.Comment: 21 pages, no figure

    DGP Brane as a Gravity Conductor

    Get PDF
    We study how the DGP (Dvali-Gabadadze-Porrati) brane affects particle dynamics in linearized approximation. We find that once the particle is removed from the brane it is repelled to the bulk. Assuming that the cutoff for gravitational interaction is M∗∌1/Ï”M_*\sim 1/\epsilon, we calculate the classical self energy of a particle as the function of its position. Since the particle wants to go to the region where its self energy is lower, it is repelled from the brane to the bulk where it gains its 5D self energy. Cases when mass of the particle m8π2M∗m8\pi^2M_* are qualitatively different, and in later case one has to take into account effects of strong gravity. In both cases the particle is repelled from the brane. For m<8π2M∗m<8\pi^2M_* we obtain the same result from the 'electrostatic' analog of the theory. In that language mass (charge) in the bulk induces charge distribution on the brane which shields the other side of the brane and provides repulsive force. The DGP brane acts as a conducting plane in electrostatics (keeping in mind that in gravity different charges repel). The repulsive nature of the brane requires a certain localization mechanism. When the particle overcomes the localizing potential it rapidly moves to the bulk. Particles of mass m>8π2M∗m>8\pi^2M_* form a black hole within 1/M∗1/M_* distance from the brane.Comment: 13 pages, 3 figure

    Gravity induced over a smooth soliton

    Get PDF
    I consider gravity induced over a smooth (finite thickness) soliton. Graviton kinetic term is coupled to bulk scalar that develops solitonic vacuum expectation value. Couplings of Kaluza-Klein modes to soliton-localized matter are suppressed, giving rise to crossover distance rc=MP2/M∗3r_c=M_{P}^2/M_{*}^3 between 4D and 5D behavior. This system can be viewed as a finite thickness brane regularization of the model of Dvali, Gabadadze and Porrati.Comment: 12 pages, 2 figure

    Domain Walls in SU(5)

    Get PDF
    We consider the Grand Unified SU(5) model with a small or vanishing cubic term in the adjoint scalar field in the potential. This gives the model an approximate or exact Z2_2 symmetry whose breaking leads to domain walls. The simplest domain wall has the structure of a kink across which the Higgs field changes sign (Ω→−Ω\Phi \to -\Phi) and inside which the full SU(5) is restored. The kink is shown to be perturbatively unstable for all parameters. We then construct a domain wall solution that is lighter than the kink and show it to be perturbatively stable for a range of parameters. The symmetry in the core of this domain wall is smaller than that outside. The interactions of the domain wall with magnetic monopole is discussed and it is shown that magnetic monopoles with certain internal space orientations relative to the wall pass through the domain wall. Magnetic monopoles in other relative internal space orientations are likely to be swept away on collision with the domain walls, suggesting a scenario where the domain walls might act like optical polarization filters, allowing certain monopole ``polarizations'' to pass through but not others. As SU(5) domain walls will also be formed at small values of the cubic coupling, this leads to a very complicated picture of the evolution of defects after the Grand Unified phase transition.Comment: 6 pages, 1 figure. Animations can be viewed at http://theory4.phys.cwru.edu/~levon/figures.htm

    Braneworld Flattening by a Cosmological Constant

    Get PDF
    We present a model with an infinite volume bulk in which a braneworld with a cosmological constant evolves to a static, 4-dimensional Minkowski spacetime. This evolution occurs for a generic class of initial conditions with positive energy densities. The metric everywhere outside the brane is that of a 5-dimensional Minkowski spacetime, where the effect of the brane is the creation of a frame with a varying speed of light. This fact is encoded in the structure of the 4-dimensional graviton propagator on the braneworld, which may lead to some interesting Lorentz symmetry violating effects. In our framework the cosmological constant problem takes a different meaning since the flatness of the Universe is guaranteed for an arbitrary negative cosmological constant. Instead constraints on the model come from different concerns which we discuss in detail.Comment: 18 pages, 3 figures RevTe
    • 

    corecore